LaTeX 符号常用于数学公式,以下分别从高等数学、线性代数和离散数学进行罗列并举例。
高等数学
- 加减(正负) / 乘 / 除
- \(\pm\) / \(\times\) / \(\div\):
\pm
/\time
/\div
- \(\pm\infty\) / \(n!=n(n-1)\cdots2\times1\) / \(n\div d\):
\pm\infty
/n!=n(n-1)\cdots2\times1
/n\div d
- 复合
- \(\circ\):
\circ
- \((f\circ g)(x)=f[g(x)]\):
(f\circ g)(x)=f[g(x)]
- 去心邻域
- \(\mathring{}\):
\mathring{}
- \(\mathring{U}(x_0,\delta)\):
\mathring{U}(x_0,\delta)
- 分式
- \(\frac{}{}\):
\frac{}{}
- \(\frac{dy}{dx}=-\frac{F_x}{F_y}\):
\frac{dy}{dx}=-\frac{F_x}{F_y}
- 极限
- \(\lim\):
\lim
- \(\lim\limits_{x \to \infty}f(x)=A\):
\lim\limits_{x\to\infty}f(x)=A
- 开平方 / 开 n 次方
- \(\sqrt{}\) / \(\sqrt[n]{}\):
\sqrt{}
/\sqrt[n]{}
- \(ds=\sqrt{1+y'^2}dx\) / \(\lim_{n\to\infty}\sqrt[n]{n}=1\):
ds=\sqrt{1+y'^2}dx
/\lim_{n\to\infty}\sqrt[n]{n}=1
- 不等于 / 约等于
- \(\neq\) / \(\approx\):
\neq
/\approx
- \(f'(x_0)\neq0\) / \(\Delta y\approx f'(x_0)\Delta x\):
f'(x_0)\neq0
/\Delta y\approx f'(x_0)\Delta x
- 小于等于 / 大于等于 / 远小于 / 远大于
- \(\leq\) / \(\geq\) / \(\ll\) / \(\gg\):
\leq
/\geq
/\ll
/\gg
- \(\ln x\leq x-1\) / \(e^x\geq 1+x\) / \(|y'|\ll1\) / \(1\ll|y'|\):
\ln x\leq x-1
/e^x\geq 1+x
/|y'|\ll1
/1\ll|y'|
- 偏导
- \(\partial\):
\partial
- \(\frac{\partial^2z}{\partial x\partial y}=f_{xy}(x,y)\):
\frac{\partial^2z}{\partial x\partial y}=f_{xy}(x,y)
- 积分
- \(\int\):
\int
- \(\int f(x)dx=F(x)+C\):
\int f(x)dx=F(x)+C
- 二重积分
- \(\iint\):
\iint
- \(\iint\limits_Df(x,y)d\sigma=\iint\limits_Df(x,y)dxdy\):
\iint\limits_Df(x,y)d\sigma=\iint\limits_Df(x,y)dxdy
- 平均
- \(\overline{}\):
\overline{}
- \(\overline{y}=\frac{1}{b-a}\int_a^by(x)dx\):
\overline{y}=\frac{1}{b-a}\int_a^by(x)dx
线性代数
- 行列式
- \(\begin{vmatrix}\end{vmatrix}\):
\begin{vmatrix}\end{vmatrix}
-
\(D=
\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\vdots&\vdots&\vdots&\vdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}\):
D= \begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}
- 等号上说明
- \(\xlongequal{}\):
\xlongequal{}
-
\(\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
\vdots&\vdots&\vdots&\vdots\\
ka_{i1}&ka_{i2}&\cdots&ka_{in}\\
\vdots&\vdots&\vdots&\vdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}
\xlongequal{r_i\div k}k
\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
\vdots&\vdots&\vdots&\vdots\\
a_{i1}&a_{i2}&\cdots&a_{in}\\
\vdots&\vdots&\vdots&\vdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}\):
\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots\\ ka_{i1}&ka_{i2}&\cdots&ka_{in}\\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix} \xlongequal{r_i\div k}k \begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots\\ a_{i1}&a_{i2}&\cdots&a_{in}\\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}
- 连乘
- \(\prod\):
\prod
-
\(\begin{vmatrix}
1&1&\cdots&1\\
x_1&x_2&\cdots&x_n\\
x_1^2&x_2^2&\cdots&x_n^2\\
\vdots&\vdots&\vdots&\vdots\\
x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}\\
\end{vmatrix}
=
\prod_{1\leq i<j\leq n}(x_j-x_i)\):
\begin{vmatrix} 1&1&\cdots&1\\ x_1&x_2&\cdots&x_n\\ x_1^2&x_2^2&\cdots&x_n^2\\ \vdots&\vdots&\vdots&\vdots\\ x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}\\ \end{vmatrix} = \prod_{1\leq i<j\leq n}(x_j-x_i)
- 矩阵
- \(\begin{pmatrix}\end{pmatrix}\):
\begin{pmatrix}\end{pmatrix}
-
\(A=\begin{pmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\vdots&\vdots&\vdots&\vdots\\
a_{m1}&a_{m2}&\cdots&a_{mn}
\end{pmatrix}\):
A=\begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn} \end{pmatrix}
- 左大括号
- \(\begin{cases}\end{cases}\):
\begin{cases}\end{cases}
-
\(\begin{cases}
a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\
a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\
\cdots\ \cdots\ \cdots\ \cdots\\
a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,
\end{cases}\):
\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\ \cdots\ \cdots\ \cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m, \end{cases}
- 等价 / 合同
- \(\cong\) / \(\simeq\):
\cong
/\simeq
- \(A\cong B\) / \(A\simeq B\):
A\cong B
/A\simeq B
离散数学
- 合取 / 析取 / 异或
- \(\land\) / \(\lor\) / \(\oplus\):
\land
/\lor
/\oplus
- \(p\land q\) / \(p\lor q\) / \(p\oplus q\):
p\land q
/p\lor q
/p\oplus q
- 连续合取 / 连续析取
- \(\bigwedge\) / \(\bigvee\):
\bigwedge
/\bigvee
- \(\neg(\underset{j=1}{\overset{n}\bigwedge}p_j)\equiv\underset{j=1}{\overset{n}\bigvee}\neg p_j\):
\neg(\underset{j=1}{\overset{n}\bigwedge}p_j) \equiv \underset{j=1}{\overset{n}\bigvee}\neg p_j
- 蕴含 / 双向蕴含
- \(\to\) / \(\leftrightarrow\):
\to
/\leftrightarrow
- \(p\to q\) / \(p\leftrightarrow q\):
p\to q
/p\leftrightarrow q
- 全称量词 / 存在量词
- \(\forall\) / \(\exists\):
\forall
/\exists
- \(\forall xp(x)\) / \(\exists xp(x)\):
\forall xp(x)
/\exists xp(x)
- 因此
- \(\therefore\):
\therefore
-
\(\begin{align}
&p\\
&\underline{p\to q}\\
\therefore\ &q
\end{align}\):
\begin{align} &p\\ &\underline{p\to q}\\ \therefore\ &q \end{align}
- 属于 / 不属于
- \(\in\) / \(\notin\):
\in
/\notin
- \(a\in A\) / \(a\notin A\):
a\in A
/a\notin A
- 子集 / 父集 / 真子集 / 真父集
- \(\subseteq\) / \(\supseteq\) / \(\subset\) / \(\supset\):
\subseteq
/\supseteq
/\subset
/\supset
- \(A\subseteq B\) / \(B\supseteq A\) / \(A\subset B\) / \(B\supset A\):
A\subseteq B
/B\supseteq A
/A\subset B
/B\supset A
- 空集 / 阿列夫零
- \(\varnothing\) / \(\aleph_0\):
\varnothing
/\aleph_0
- \(\varnothing\subseteq S\) / \(|S|=\aleph_0\):
\varnothing\subseteq S
/|S|=\aleph_0
- 并集 / 交集
- \(\cup\) / \(\cap\):
\cup
/\cap
- \(A\cup B\) / \(A\cap B\):
A\cup B
/A\cap B
- 连续并集 / 连续交集
- \(\bigcup\) / \(\bigcap\):
\bigcup
/\bigcap
- \(\underset{i=1}{\overset{n}\bigcup}A_i\) / \(\underset{i=1}{\overset{n}\bigcap}A_i\):
\underset{i=1}{\overset{n}\bigcup}A_i
/\underset{i=1}{\overset{n}\bigcap}A_i
- 布尔积
- \(\odot\):
\odot
- \(A\odot B\):
A\odot B
- 求和
- \(\sum\):
\sum
- \(\sum_{k=1}^{n}k=\frac{n(n+1)}{2}\):
\sum_{k=1}^{n}k=\frac{n(n+1)}{2}
- 下大括号
- \(\underbrace{}\):
\underbrace{}
- \(A^R=\underbrace{AAA\cdots A}_{(r个A相乘)}\):
A^R=\underbrace{AAA\cdots A}_{(r个A相乘)}
- 不大于 x 的最大整数 / 不小于 x 的最小整数
- \(\lfloor x\rfloor\) / \(\lceil x\rceil\):
\lfloor x\rfloor
/\lceil x\rceil
- \(\lfloor \log_2n\rfloor+1\) / \(\lceil \log_2(n+1)\rceil\):
\lfloor \log_2n\rfloor+1
/\lceil \log_2(n+1)\rceil