数学公式中常用的 LaTeX 符号

LaTeX 符号常用于数学公式,以下分别从高等数学、线性代数和离散数学进行罗列并举例。

高等数学

加减(正负) / 乘 / 除
\(\pm\) / \(\times\) / \(\div\): \pm / \time / \div
\(\pm\infty\) / \(n!=n(n-1)\cdots2\times1\) / \(n\div d\): \pm\infty / n!=n(n-1)\cdots2\times1 / n\div d
复合
\(\circ\): \circ
\((f\circ g)(x)=f[g(x)]\): (f\circ g)(x)=f[g(x)]
去心邻域
\(\mathring{}\): \mathring{}
\(\mathring{U}(x_0,\delta)\): \mathring{U}(x_0,\delta)
分式
\(\frac{}{}\): \frac{}{}
\(\frac{dy}{dx}=-\frac{F_x}{F_y}\): \frac{dy}{dx}=-\frac{F_x}{F_y}
极限
\(\lim\): \lim
\(\lim\limits_{x \to \infty}f(x)=A\): \lim\limits_{x\to\infty}f(x)=A
开平方 / 开 n 次方
\(\sqrt{}\) / \(\sqrt[n]{}\): \sqrt{} / \sqrt[n]{}
\(ds=\sqrt{1+y'^2}dx\) / \(\lim_{n\to\infty}\sqrt[n]{n}=1\): ds=\sqrt{1+y'^2}dx / \lim_{n\to\infty}\sqrt[n]{n}=1
不等于 / 约等于
\(\neq\) / \(\approx\): \neq / \approx
\(f'(x_0)\neq0\) / \(\Delta y\approx f'(x_0)\Delta x\): f'(x_0)\neq0 / \Delta y\approx f'(x_0)\Delta x
小于等于 / 大于等于 / 远小于 / 远大于
\(\leq\) / \(\geq\) / \(\ll\) / \(\gg\): \leq / \geq / \ll / \gg
\(\ln x\leq x-1\) / \(e^x\geq 1+x\) / \(|y'|\ll1\) / \(1\ll|y'|\): \ln x\leq x-1 / e^x\geq 1+x / |y'|\ll1 / 1\ll|y'|
偏导
\(\partial\): \partial
\(\frac{\partial^2z}{\partial x\partial y}=f_{xy}(x,y)\): \frac{\partial^2z}{\partial x\partial y}=f_{xy}(x,y)
积分
\(\int\): \int
\(\int f(x)dx=F(x)+C\): \int f(x)dx=F(x)+C
二重积分
\(\iint\): \iint
\(\iint\limits_Df(x,y)d\sigma=\iint\limits_Df(x,y)dxdy\): \iint\limits_Df(x,y)d\sigma=\iint\limits_Df(x,y)dxdy
平均
\(\overline{}\): \overline{}
\(\overline{y}=\frac{1}{b-a}\int_a^by(x)dx\): \overline{y}=\frac{1}{b-a}\int_a^by(x)dx

线性代数

行列式
\(\begin{vmatrix}\end{vmatrix}\): \begin{vmatrix}\end{vmatrix}
\(D= \begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}\):
D=
\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\vdots&\vdots&\vdots&\vdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}
等号上说明
\(\xlongequal{}\): \xlongequal{}
\(\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots\\ ka_{i1}&ka_{i2}&\cdots&ka_{in}\\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix} \xlongequal{r_i\div k}k \begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots\\ a_{i1}&a_{i2}&\cdots&a_{in}\\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}\):
\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
\vdots&\vdots&\vdots&\vdots\\
ka_{i1}&ka_{i2}&\cdots&ka_{in}\\
\vdots&\vdots&\vdots&\vdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}
\xlongequal{r_i\div k}k
\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
\vdots&\vdots&\vdots&\vdots\\
a_{i1}&a_{i2}&\cdots&a_{in}\\
\vdots&\vdots&\vdots&\vdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}
连乘
\(\prod\): \prod
\(\begin{vmatrix} 1&1&\cdots&1\\ x_1&x_2&\cdots&x_n\\ x_1^2&x_2^2&\cdots&x_n^2\\ \vdots&\vdots&\vdots&\vdots\\ x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}\\ \end{vmatrix} = \prod_{1\leq i<j\leq n}(x_j-x_i)\):
\begin{vmatrix}
1&1&\cdots&1\\
x_1&x_2&\cdots&x_n\\
x_1^2&x_2^2&\cdots&x_n^2\\
\vdots&\vdots&\vdots&\vdots\\
x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}\\
\end{vmatrix}
=
\prod_{1\leq i<j\leq n}(x_j-x_i)
矩阵
\(\begin{pmatrix}\end{pmatrix}\): \begin{pmatrix}\end{pmatrix}
\(A=\begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn} \end{pmatrix}\):
A=\begin{pmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\vdots&\vdots&\vdots&\vdots\\
a_{m1}&a_{m2}&\cdots&a_{mn}
\end{pmatrix}
左大括号
\(\begin{cases}\end{cases}\): \begin{cases}\end{cases}
\(\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\ \cdots\ \cdots\ \cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m, \end{cases}\):
\begin{cases}
a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\
a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\
\cdots\ \cdots\ \cdots\ \cdots\\
a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,
\end{cases}
等价 / 合同
\(\cong\) / \(\simeq\): \cong / \simeq
\(A\cong B\) / \(A\simeq B\): A\cong B / A\simeq B

离散数学

合取 / 析取 / 异或
\(\land\) / \(\lor\) / \(\oplus\): \land / \lor / \oplus
\(p\land q\) / \(p\lor q\) / \(p\oplus q\): p\land q / p\lor q / p\oplus q
连续合取 / 连续析取
\(\bigwedge\) / \(\bigvee\): \bigwedge / \bigvee
\(\neg(\underset{j=1}{\overset{n}\bigwedge}p_j)\equiv\underset{j=1}{\overset{n}\bigvee}\neg p_j\):
\neg(\underset{j=1}{\overset{n}\bigwedge}p_j)
\equiv
\underset{j=1}{\overset{n}\bigvee}\neg p_j
蕴含 / 双向蕴含
\(\to\) / \(\leftrightarrow\): \to / \leftrightarrow
\(p\to q\) / \(p\leftrightarrow q\): p\to q / p\leftrightarrow q
全称量词 / 存在量词
\(\forall\) / \(\exists\): \forall / \exists
\(\forall xp(x)\) / \(\exists xp(x)\): \forall xp(x) / \exists xp(x)
因此
\(\therefore\): \therefore
\(\begin{align} &p\\ &\underline{p\to q}\\ \therefore\ &q \end{align}\):
\begin{align}
&p\\
&\underline{p\to q}\\
\therefore\ &q
\end{align}
属于 / 不属于
\(\in\) / \(\notin\): \in / \notin
\(a\in A\) / \(a\notin A\): a\in A / a\notin A
子集 / 父集 / 真子集 / 真父集
\(\subseteq\) / \(\supseteq\) / \(\subset\) / \(\supset\): \subseteq / \supseteq / \subset / \supset
\(A\subseteq B\) / \(B\supseteq A\) / \(A\subset B\) / \(B\supset A\): A\subseteq B / B\supseteq A / A\subset B / B\supset A
空集 / 阿列夫零
\(\varnothing\) / \(\aleph_0\): \varnothing / \aleph_0
\(\varnothing\subseteq S\) / \(|S|=\aleph_0\): \varnothing\subseteq S / |S|=\aleph_0
并集 / 交集
\(\cup\) / \(\cap\): \cup / \cap
\(A\cup B\) / \(A\cap B\): A\cup B / A\cap B
连续并集 / 连续交集
\(\bigcup\) / \(\bigcap\): \bigcup / \bigcap
\(\underset{i=1}{\overset{n}\bigcup}A_i\) / \(\underset{i=1}{\overset{n}\bigcap}A_i\): \underset{i=1}{\overset{n}\bigcup}A_i / \underset{i=1}{\overset{n}\bigcap}A_i
布尔积
\(\odot\): \odot
\(A\odot B\): A\odot B
求和
\(\sum\): \sum
\(\sum_{k=1}^{n}k=\frac{n(n+1)}{2}\): \sum_{k=1}^{n}k=\frac{n(n+1)}{2}
下大括号
\(\underbrace{}\): \underbrace{}
\(A^R=\underbrace{AAA\cdots A}_{(r个A相乘)}\): A^R=\underbrace{AAA\cdots A}_{(r个A相乘)}
不大于 x 的最大整数 / 不小于 x 的最小整数
\(\lfloor x\rfloor\) / \(\lceil x\rceil\): \lfloor x\rfloor / \lceil x\rceil
\(\lfloor \log_2n\rfloor+1\) / \(\lceil \log_2(n+1)\rceil\): \lfloor \log_2n\rfloor+1 / \lceil \log_2(n+1)\rceil