Common LaTeX Symbols Used in Mathematics Formulas

It is common to utilize LaTex symbols for mathematics formulas, the symbols lists for the Calculus, Linear Algebra, and Discrete Mathematics with examples is as following.

Calculus

Add-subtract (Plus-minus) / Times / Divide
\(\pm\) / \(\times\) / \(\div\): \pm / \time / \div
\(\pm\infty\) / \(n!=n(n-1)\cdots2\times1\) / \(n\div d\): \pm\infty / n!=n(n-1)\cdots2\times1 / n\div d
Composite
\(\circ\): \circ
\((f\circ g)(x)=f[g(x)]\): (f\circ g)(x)=f[g(x)]
Deleted neighborhood
\(\mathring{}\): \mathring{}
\(\mathring{U}(x_0,\delta)\): \mathring{U}(x_0,\delta)
Fraction
\(\frac{}{}\): \frac{}{}
\(\frac{dy}{dx}=-\frac{F_x}{F_y}\): \frac{dy}{dx}=-\frac{F_x}{F_y}
Limit
\(\lim\): \lim
\(\lim\limits_{x \to \infty}f(x)=A\): \lim\limits_{x\to\infty}f(x)=A
Square root / Power root
\(\sqrt{}\) / \(\sqrt[n]{}\): \sqrt{} / \sqrt[n]{}
\(ds=\sqrt{1+y'^2}dx\) / \(\lim_{n\to\infty}\sqrt[n]{n}=1\): ds=\sqrt{1+y'^2}dx / \lim_{n\to\infty}\sqrt[n]{n}=1
Not Equal to / Approximately equal to
\(\neq\) / \(\approx\): \neq / \approx
\(f'(x_0)\neq0\) / \(\Delta y\approx f'(x_0)\Delta x\): f'(x_0)\neq0 / \Delta y\approx f'(x_0)\Delta x
Less than or equal to / Greater than or equal to / Much less than / Much greater than
\(\leq\) / \(\geq\) / \(\ll\) / \(\gg\): \leq / \geq / \ll / \gg
\(\ln x\leq x-1\) / \(e^x\geq 1+x\) / \(|y'|\ll1\) / \(1\ll|y'|\): \ln x\leq x-1 / e^x\geq 1+x / |y'|\ll1 / 1\ll|y'|
Partial derivative
\(\partial\): \partial
\(\frac{\partial^2z}{\partial x\partial y}=f_{xy}(x,y)\): \frac{\partial^2z}{\partial x\partial y}=f_{xy}(x,y)
Integral
\(\int\): \int
\(\int f(x)dx=F(x)+C\): \int f(x)dx=F(x)+C
Double integral
\(\iint\): \iint
\(\iint\limits_Df(x,y)d\sigma=\iint\limits_Df(x,y)dxdy\): \iint\limits_Df(x,y)d\sigma=\iint\limits_Df(x,y)dxdy
Average
\(\overline{}\): \overline{}
\(\overline{y}=\frac{1}{b-a}\int_a^by(x)dx\): \overline{y}=\frac{1}{b-a}\int_a^by(x)dx

Linear Algebra

Determinant
\(\begin{vmatrix}\end{vmatrix}\): \begin{vmatrix}\end{vmatrix}
\(D= \begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}\):
D=
\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\vdots&\vdots&\vdots&\vdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}
Explanation on equal sign
\(\xlongequal{}\): \xlongequal{}
\(\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots\\ ka_{i1}&ka_{i2}&\cdots&ka_{in}\\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix} \xlongequal{r_i\div k}k \begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots\\ a_{i1}&a_{i2}&\cdots&a_{in}\\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}\):
\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
\vdots&\vdots&\vdots&\vdots\\
ka_{i1}&ka_{i2}&\cdots&ka_{in}\\
\vdots&\vdots&\vdots&\vdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}
\xlongequal{r_i\div k}k
\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
\vdots&\vdots&\vdots&\vdots\\
a_{i1}&a_{i2}&\cdots&a_{in}\\
\vdots&\vdots&\vdots&\vdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}
Continuous multiplication
\(\prod\): \prod
\(\begin{vmatrix} 1&1&\cdots&1\\ x_1&x_2&\cdots&x_n\\ x_1^2&x_2^2&\cdots&x_n^2\\ \vdots&\vdots&\vdots&\vdots\\ x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}\\ \end{vmatrix} = \prod_{1\leq i<j\leq n}(x_j-x_i)\):
\begin{vmatrix}
1&1&\cdots&1\\
x_1&x_2&\cdots&x_n\\
x_1^2&x_2^2&\cdots&x_n^2\\
\vdots&\vdots&\vdots&\vdots\\
x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}\\
\end{vmatrix}
=
\prod_{1\leq i<j\leq n}(x_j-x_i)
Matrix
\(\begin{pmatrix}\end{pmatrix}\): \begin{pmatrix}\end{pmatrix}
\(A=\begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn} \end{pmatrix}\):
A=\begin{pmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\vdots&\vdots&\vdots&\vdots\\
a_{m1}&a_{m2}&\cdots&a_{mn}
\end{pmatrix}
Left curly bracket
\(\begin{cases}\end{cases}\): \begin{cases}\end{cases}
\(\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\ \cdots\ \cdots\ \cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m, \end{cases}\):
\begin{cases}
a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\
a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\
\cdots\ \cdots\ \cdots\ \cdots\\
a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,
\end{cases}
Equivalence / Contract
\(\cong\) / \(\simeq\): \cong / \simeq
\(A\cong B\) / \(A\simeq B\): A\cong B / A\simeq B

Discrete Mathematics

Conjunction / Disjunctions / Exclusive or
\(\land\) / \(\lor\) / \(\oplus\): \land / \lor / \oplus
\(p\land q\) / \(p\lor q\) / \(p\oplus q\): p\land q / p\lor q / p\oplus q
Continuous conjunction / Continuous disjunctions
\(\bigwedge\) / \(\bigvee\): \bigwedge / \bigvee
\(\neg(\underset{j=1}{\overset{n}\bigwedge}p_j)\equiv\underset{j=1}{\overset{n}\bigvee}\neg p_j\):
\neg(\underset{j=1}{\overset{n}\bigwedge}p_j)
\equiv
\underset{j=1}{\overset{n}\bigvee}\neg p_j
Implication / Bidirectional implication
\(\to\) / \(\leftrightarrow\): \to / \leftrightarrow
\(p\to q\) / \(p\leftrightarrow q\): p\to q / p\leftrightarrow q
Universal quantifier / Existential quantifier
\(\forall\) / \(\exists\): \forall / \exists
\(\forall xp(x)\) / \(\exists xp(x)\): \forall xp(x) / \exists xp(x)
Therefore
\(\therefore\): \therefore
\(\begin{align} &p\\ &\underline{p\to q}\\ \therefore\ &q \end{align}\):
\begin{align}
&p\\
&\underline{p\to q}\\
\therefore\ &q
\end{align}
Belong to / Not belong to
\(\in\) / \(\notin\): \in / \notin
\(a\in A\) / \(a\notin A\): a\in A / a\notin A
Subset / Parent set / Proper subset / Proper parent set
\(\subseteq\) / \(\supseteq\) / \(\subset\) / \(\supset\): \subseteq / \supseteq / \subset / \supset
\(A\subseteq B\) / \(B\supseteq A\) / \(A\subset B\) / \(B\supset A\): A\subseteq B / B\supseteq A / A\subset B / B\supset A
Empty set / Aleph zero
\(\varnothing\) / \(\aleph_0\): \varnothing / \aleph_0
\(\varnothing\subseteq S\) / \(|S|=\aleph_0\): \varnothing\subseteq S / |S|=\aleph_0
Union / Intersection
\(\cup\) / \(\cap\): \cup / \cap
\(A\cup B\) / \(A\cap B\): A\cup B / A\cap B
Continuous union /Continuous intersection
\(\bigcup\) / \(\bigcap\): \bigcup / \bigcap
\(\underset{i=1}{\overset{n}\bigcup}A_i\) / \(\underset{i=1}{\overset{n}\bigcap}A_i\): \underset{i=1}{\overset{n}\bigcup}A_i / \underset{i=1}{\overset{n}\bigcap}A_i
Boolean product
\(\odot\): \odot
\(A\odot B\): A\odot B
Sum
\(\sum\): \sum
\(\sum_{k=1}^{n}k=\frac{n(n+1)}{2}\): \sum_{k=1}^{n}k=\frac{n(n+1)}{2}
Curly bracket below
\(\underbrace{}\): \underbrace{}
\(A^R=\underbrace{AAA\cdots A}_{(multiply\ r\ A's)}\): A^R=\underbrace{AAA\cdots A}_{(multiply r A's)}
The largest integer not greater than x / The smallest integer not less than x
\(\lfloor x\rfloor\) / \(\lceil x\rceil\): \lfloor x\rfloor / \lceil x\rceil
\(\lfloor \log_2n\rfloor+1\) / \(\lceil \log_2(n+1)\rceil\): \lfloor \log_2n\rfloor+1 / \lceil \log_2(n+1)\rceil